skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kornblum, Lior"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ferroelectric nanomaterials offer the promise of switchable electronic properties at the surface, with implications for photo- and electrocatalysis. Studies to date on the effect of ferroelectric surfaces in electrocatalysis have been primarily limited to nanoparticle systems where complex interfaces arise. Here, we use MBE-grown epitaxial BaTiO3 thin films with atomically sharp interfaces as model surfaces to demonstrate the effect of ferroelectric polarization on the electronic structure, intermediate binding energy, and electrochemical activity toward the hydrogen evolution reaction (HER). Surface spectroscopy and ab initio DFT +U calculations of the well-defined (001) surfaces indicate that an upward polarized surface reduces the work function relative to downward polarization and leads to a smaller HER barrier, in agreement with the higher activity observed experimentally. Employing ferroelectric polarization to create multiple adsorbate interactions over a single electrocatalytic surface, as demonstrated in this work, may offer new opportunities for nanoscale catalysis design beyond traditional descriptors. 
    more » « less
  2. The temperature-dependent layer-resolved structure of 3 to 44 unit cell thick SrRuO3 (SRO) films grown on Nb-doped SrTiO3 substrates is investigated using a combination of high-resolution synchrotron x-ray diffraction and high-resolution electron microscopy to understand the role that structural distortions play in suppressing ferromagnetism in ultra-thin SRO films. The oxygen octahedral tilts and rotations and Sr displacements characteristic of the bulk orthorhombic phase are found to be strongly dependent on temperature, the film thickness, and the distance away from the film–substrate interface. For thicknesses, t, above the critical thickness for ferromagnetism (t > 3 uc), the orthorhombic distortions decrease with increasing temperature above TC. Below TC, the structure of the films remains constant due to the magneto-structural coupling observed in bulk SRO. The orthorhombic distortions are found to be suppressed in the 2–3 interfacial layers due to structural coupling with the SrTiO3 substrate and correlate with the critical thickness for ferromagnetism in uncapped SRO films. 
    more » « less
  3. Abstract Functional oxides are an untapped resource for futuristic devices and functionalities. These functionalities can range from high temperature superconductivity to multiferroicity and novel catalytic schemes. The most prominent route for transforming these ideas from a single device in the lab to practical technologies is by integration with semiconductors. Moreover, coupling oxides with semiconductors can herald new and unexpected functionalities that exist in neither of the individual materials. Therefore, oxide epitaxy on semiconductors provides a materials platform for novel device technologies. As oxides and semiconductors exhibit properties that are complementary to one another, epitaxial heterostructures comprised of the two are uniquely poised to deliver rich functionalities. This review discusses recent advancements in the growth of epitaxial oxides on semiconductors, and the electronic and physical structure of their interfaces. Leaning on these fundamentals and practicalities, the material behavior and functionality of semiconductor–oxide heterostructures is discussed, and their potential as device building blocks is highlighted. The culmination of this discussion is a review of recent advances in the development of prototype devices based on semiconductor–oxide heterostructures, in areas ranging from silicon photonics to photocatalysis. This overview is intended to stimulate ideas for new concepts of functional devices and lay the groundwork for their realization. 
    more » « less